Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124062, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38401506

RESUMEN

Biomimetic inorganic nanoenzyme is a kind of nanomaterial with long-term stability, easy preparation and low cost, which could instead of natural biological enzyme. Metal-organic framework (MOFs) as effectively nanoenzyme was attracted more attention for the adjustability and large specific surface area. This design is based on the catalase-like catalytic activity of 2D metal-organic frameworks (MOFs) and the high sensitivity of surface enhanced Raman spectroscopy (SERS) biosensors to construct a novel SERS biosensor capable of efficiently detecting mercury (Hg2+). In this study, 2D MOFs nanozyme was instead of 3D structure with more effecient catalytic site, which can catalyze o-Phenylenediamine (OPD) to OPDox with the assistance of H2O2. Besides, a magnetic composite nanomaterial Fe3O4@Ag@OPD was prepared as a signal carrier. In the presence of Hg2+, T-Hg2+-T base pairs were used to connect the two materials to realize Raman signal change. Based on this principle, the SERS sensor can realize the sensitive detection of Hg2+, the detection range is 1.0 × 10-12 âˆ¼ 1.0 × 10-2 mol‧L-1, and the detection limit is 1.36 × 10-13 mol‧L-1. This method greatly improves the reliability of SERS sensor for detecting the target, and provides a new idea for detecting metal ions in the environment.


Asunto(s)
Mercurio , Nanopartículas del Metal , Estructuras Metalorgánicas , Fenilendiaminas , Estructuras Metalorgánicas/química , Peróxido de Hidrógeno , Reproducibilidad de los Resultados , Espectrometría Raman/métodos , Fenómenos Magnéticos , Nanopartículas del Metal/química
2.
Food Chem ; 445: 138717, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354642

RESUMEN

Chloramphenicol (CAP) residue in food can cause great harm to human health, it is important to develop a rapid and sensitive method to detect CAP. Here, molecularly imprinted polymer (MIP) was combined with metal-organic frameworks@Au (MOFs@Au) collaborative construction surface-enhanced Raman spectroscopy (SERS) based aptasensor for CAP ultrasensitive detection. MOFs@Au first carried the Raman signal molecule toluidine blue (TB) and aptamer to form MOFs@Au@TB@Apt. In addition, rMIP (CAP was removed) was dropped onto the uniform three-dimensional (3D) SERS substrate SiO2@AuAg to form SiO2@AuAg@rMIP. In the presence of target CAP, it could be specifically captured with rMIP by covalent interaction and was recognised by the aptamer. During this time, SiO2@AuAg@rMIP@CAP could selectively connect MOFs@Au@TB@Apt to realise synergistic enhance the Raman signal. Based on this principle, the proposed SERS aptasensor exhibits excellent sensitivity with a detection limit of 7.59×10-13 M for CAP, providing a new strategy for trace detection in food.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Humanos , Cloranfenicol , Dióxido de Silicio/química , Oro/química , Técnicas Biosensibles/métodos , Espectrometría Raman/métodos , Oligonucleótidos , Nanopartículas del Metal/química , Límite de Detección
3.
ACS Appl Mater Interfaces ; 16(1): 1712-1718, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113293

RESUMEN

Herein, an adenosine triphosphate (ATP)-induced enzyme-catalyzed cascade reaction system based on metal-organic framework/alkaline phosphatase (MOF/ALP) nanocomposites was designed to establish a surface-enhanced Raman spectroscopy (SERS) biosensor for use in rapid, sensitive ATP detection. Numerous ALP molecules were first encapsulated using ZIF-90 to temporarily deactivate the enzyme activity, similar to a lock. Au nanostars (AuNSs), as SERS-enhancing substrates, were combined with o-phenylenediamine (OPD) to form AuNSs@OPD, which could significantly improve the Raman signal of OPD. When the target ATP interacted with the MOF/ALP nanocomposites, ATP could act as a key to open the MOF structure, releasing ALP, which should further catalyze the conversion of OPD to oxOPD with the aid of ascorbic acid 2-phosphate. Therefore, with the increasing concentrations of ATP, more ALP was released to catalyze the conversion of OPD, resulting in the reduced intensity of the Raman peak at 1262 cm-1, corresponding to the level of OPD. Based on this principle, the ATP-induced enzyme-catalyzed cascade reaction SERS biosensor enabled the ultrasensitive detection of ATP, with a low detection limit of 0.075 pM. Consequently, this study provides a novel strategy for use in the ultrasensitive, rapid detection of ATP, which displays considerable potential for application in the fields of biomedicine and disease diagnosis.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Fenilendiaminas , Estructuras Metalorgánicas/química , Fosfatasa Alcalina/química , Adenosina Trifosfato/química , Espectrometría Raman/métodos , Inmunoensayo , Catálisis , Oro/química , Nanopartículas del Metal/química
4.
J Org Chem ; 88(7): 4234-4243, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36989519

RESUMEN

Herein, we performed the reactions of M3N@Ih-C80 (M = Sc and Lu) with the methanol (CH3OH) solution of TBAOH (note that both CH3O- and OH- are nucleophiles) in benzonitrile (PhCN) and dimethylformamide, respectively. It is found that OH- ions rather than CH3O- ions selectively attacked the fullerene cage to form the M3N@C80--O- intermediate. Although the fullerene cage is initially attacked by OH- in both PhCN and DMF solvents, the products are quite different. In PhCN, two isomeric Sc3N@Ih-C80 fullerooxazoline heterocyclic products (1 and 2) were synthesized. Whereas, in DMF, an epoxide of Lu3N@Ih-C80 (3) was obtained. The preference for fullerooxazoline formation over that of fullerene epoxy in PhCN is well explained by density functional theory calculations. Plausible reaction mechanisms for the formation of metallofullerene oxazoline and epoxide were proposed based on the experimental and theoretical results.

5.
J Am Chem Soc ; 144(47): 21587-21595, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36354144

RESUMEN

Azafullerenes derived from nitrogen substitution of carbon cage atoms render direct modifications of the cage skeleton, electronic, and physicochemical properties of fullerene. Gas-phase ionized monometallic endohedral azafullerene (MEAF) [La@C81N]+ formed via fragmentation of a La@C82 monoadduct was detected in 1999, but the pristine MEAF has never been synthesized. Here, we report the synthesis, isolation, and characterization of the first pristine MEAF La@C81N, tackling the two-decade challenge. Single-crystal X-ray diffraction study reveals that La@C81N has an 82-atom cage with a pseudo C3v(8) symmetry. According to DFT computations, the nitrogen substitution site within the C82 cage is proposed to locate at a hexagon/hexagon/pentagon junction far away from the encapsulated La atom. La@C81N exists in stable monomer form with a closed-shell electronic state, which is drastically different from the open-shell electronic state of the original La@C82. Our breakthrough in synthesizing a new type of azafullerene offers a new insight into the skeletal modification of fullerenes.

6.
Proc Natl Acad Sci U S A ; 119(39): e2202563119, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122234

RESUMEN

Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.

7.
J Am Chem Soc ; 144(30): 13839-13850, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862295

RESUMEN

Despite their multifaceted advantages, inverted perovskite solar cells (PSCs) still suffer from lower power conversion efficiencies (PCEs) than their regular counterparts, which is largely due to recombination energy losses (Eloss) that arise from the chemical, physical, and energy level mismatches, especially at the interfaces between perovskites and fullerene electron transport layers (ETLs). To address this problem, we herein introduce an aminium iodide derivative of a buckybowl (aminocorannulene) that is molecularly layered at the perovskite-ETL interface. Strikingly, besides passivating the PbI2-rich perovskite surface, the aminocorannulene enforces a vertical dipole and enhances the surface n-type character that is more compatible with the ETL, thus boosting the electron extraction and transport dynamics and suppressing interfacial Eloss. As a result, the champion PSC achieves an excellent PCE of over 22%, which is superior compared to that of the control device (∼20%). Furthermore, the device stability is significantly enhanced, owing to a lock-and-key-like grip on the mobile iodides by the buckybowls and the resultant increase of the interfacial ion-migration barrier. This work highlights the potential of buckybowls for the multifunctional surface engineering of perovskite toward high-performance and stable PSCs.

8.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893515

RESUMEN

Unlike traditional small molecule drugs, fullerene is an all-carbon nanomolecule with a spherical cage structure. Fullerene exhibits high levels of antiviral activity, inhibiting virus replication in vitro and in vivo. In this review, we systematically summarize the latest research regarding the different types of fullerenes investigated in antiviral studies. We discuss the unique structural advantage of fullerenes, present diverse modification strategies based on the addition of various functional groups, assess the effect of structural differences on antiviral activity, and describe the possible antiviral mechanism. Finally, we discuss the prospective development of fullerenes as antiviral drugs.

9.
J Am Chem Soc ; 144(24): 10736-10742, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35671378

RESUMEN

Herein, a nitrogen-embedded quintuple [7]helicene (N-Q7H) with an azapentabenzocorannulene core, which can be considered to be a helicene/azacorannulene hybrid π-system, was synthesized from azapentabenzocorannulene in a three-step process. N-Q7H is the first example of a multiple helicene with an azabuckybowl core. Single-crystal X-ray diffractometry unambiguously confirmed the structure of the propeller-shaped hybrid π-system. Owing to nitrogen-atom doping in the multiple helicenes and effective hybridization between the helicene and azacorannulene, N-Q7H exhibits considerably redshifted absorption and emission (yellow-to-green color change and green-to-near-infrared fluorescence change) relative to the azapentabenzocorannulene core. The broad absorption from the ultraviolet-visible to the NIR region is ascribable to the allowed transition between the highest occupied molecular orbital and the lowest unoccupied molecular orbital after symmetry breaking, as revealed by density functional theory calculations. Compared to previous propeller-shaped multiple helicenes with corannulene or hexabenzocoronene (etc.) as cores, N-Q7H demonstrates a significantly higher NIR fluorescence quantum efficiency of 28%. Additionally, the chiral-resolution and redox properties of N-Q7H were investigated. The excellent photophysical and inherent chiral properties of N-Q7H suggest that azapentabenzocorannulene can be used as an outstanding nitrogen-embedded core to construct novel multiple helicenes with wide application potential, including as NIR fluorescent bio-probes.

10.
Angew Chem Int Ed Engl ; 61(33): e202204334, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35698274

RESUMEN

Herein, a hetero(S,N)-quintuple [9]helicene (SNQ9H) molecule with an azacorannulene core was synthesized, currently representing the highest hetero-helicene reported in the field of multiple [n]helicenes. X-ray crystallography indicated that SNQ9H includes not only a propeller-shaped conformer SNQ9H-1, but also an unforeseen quasi-propeller-shaped conformer SNQ9H-2. Different conformers were observed for the first time in multiple [n≥9]helicenes, likely owing to the doping of heteroatomic sulfurs in the helical skeletons. Remarkably, the ratio of SNQ9H-1 to SNQ9H-2 can be regulated in situ by the reaction temperature. Experimental studies on the photophysical and redox properties of SNQ9H and theoretical calculations clearly demonstrated that the electronic structures of SNQ9H depend on their molecular conformations. The strategy of introducing heteroatomic sulfurs into the helical skeleton may be useful in constructing various conformers of higher multiple [n]helicenes in the future.

11.
Small Methods ; 5(3): e2001086, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34927822

RESUMEN

Conical carbon, specifically multi-walled carbon nanocones (CNCs) and single-walled carboncones, is a new class of sp2 -hybridized carbon allotrope, in addition to fullerene, carbon nanotubes (CNTs), and graphene. Characterized by a conical and delocalized aromatic configuration, the conical carbon structure is considered the intermediate structure between planar graphene and open-cage fullerene. CNCs can be stiffer than CNTs and exhibit intriguing physical and chemical properties owing to their unique hollow conical structure, which make these materials promising for application as field emission sources and scanning probes. The research on conical carbon structures is in its nascent stage, mainly because of the limitations in the synthesis and purification of conical carbons. This review summarizes the significant progress in the synthesis of CNCs and carboncones. Particularly, the synthetic methods, which can be divided into traditional physical-chemical synthesis methods for multi-walled CNCs and emerging bottom-up organic synthesis methods for single-walled carboncones, are comprehensively discussed. In addition, the advantages and disadvantages of the various synthetic methods as well as the possible formation and growth mechanisms of CNCs and carboncones are discussed. Finally, some outlooks on the potential solutions to the synthesis of single-walled carboncones with uniform apex angles are presented.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835796

RESUMEN

The flash vacuum pyrolysis (FVP) technique is useful for preparing curved polycyclic aromatic compounds (PAHs) and caged nanocarbon molecules, such as the well-known corannulene and fullerene C60. However, the operating temperature of the traditional FVP apparatus is limited to ~1250 °C, which is not sufficient to overcome the high energy barriers of some reactions. Herein, we report an ultrahigh-temperature FVP (UT-FVP) apparatus with a controllable operating temperature of up to 2500 °C to synthesize fullerene C60 from a nonaromatic single carbon reactant, i.e., chloroform, at 1350 °C or above. Fullerene C60 cannot be obtained from CHCl3 using the traditional FVP apparatus because of the limitation of the reaction temperature. The significant improvements in the UT-FVP apparatus, compared to the traditional FVP apparatus, were the replacement of the quartz tube with a graphite tube and the direct heating of the graphite tube by impedance heating instead of indirect heating of the quartz tube using an electric furnace. Because of the higher temperature range, UT-FVP can not only synthesize fullerene C60 from single carbon nonaromatic reactants but sublimate some high-molecular-weight compounds to synthesize larger curved PAHs in the future.

14.
Chem Sci ; 12(23): 8123-8130, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34194702

RESUMEN

An attempt to achieve heterocyclic cycloadducts of Sc3N@I h-C80 via reaction with Ph2C[double bond, length as m-dash]O, PhC[triple bond, length as m-dash]CPh or PhC[triple bond, length as m-dash]N in the presence of tetrabutylammonium hydroxide (TBAOH) stored in CH3OH led to the formation of the unexpected bismethoxyl adducts of Sc3N@I h-C80 (1 and 2). Further studies reveal that TBAOH in CH3OH can boost the CH3O- addition efficiently, regardless of the presence of other reagents. Single-crystal X-ray diffraction results firmly assign the molecular structures of 1 and 2 as respective 1,4- and 1,2-bismethoxyl adducts, and reveal unusual relationships between the internal Sc3N cluster and the addition modes, in addition to the unusual packing mode in view of the orientation of the methoxyl groups. Electrochemical results demonstrate smaller electrochemical gaps for 1 and 2, relative to that of Sc3N@I h-C80, confirming their better electroactive properties. Finally, a plausible reaction mechanism involving anion addition and a radical reaction was proposed, presenting new insights into the highly selective reactions between the methoxyl anion and metallofullerenes. 1 and 2 represent the first examples of methoxyl derivatives of metallofullerenes. This work not only presents a novel and facile strategy for the controllable synthesis of alkoxylated metallofullerene derivatives, but also provides new non-cycloadducts for the potential applications of EMFs.

15.
Chem Sci ; 12(20): 6890-6895, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-34123317

RESUMEN

Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@I h(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy-Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2-@C80 6- and features an unprecedented three-center single-electron Dy-Dy-Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@I h(7)-C80 with a (Sc3)9+(C2)3-@C80 6- charge distribution and no metal-metal bonding.

16.
J Am Chem Soc ; 143(21): 8078-8085, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34010566

RESUMEN

Monometallic cyanide clusterfullerenes (CYCFs) represent a unique branch of endohedral clusterfullerenes with merely one metal atom encapsulated, offering a model system for elucidating structure-property correlation, while up to now only C82 and C76 cages have been isolated for the pristine CYCFs. C84 is one of the most abundant fullerenes and has 24 isomers obeying the isolated pentagon rule (IPR), among which 14 isomers have been already isolated, whereas the C2v(17)-C84 isomer has lower relative energy than several isolated isomers but never been found for empty and endohedral fullerenes. Herein, four novel C84-based pristine CYCFs with variable encapsulated metals and isomeric cages, including MCN@C2(13)-C84 (M = Y, Dy, Tb) and DyCN@C2v(17)-C84, have been synthesized and isolated, fulfilling the first identification of the missing C2v(17)-C84 isomer, which can be interconverted from the C2(13)-C84 isomer through two steps of Stone-Wales transformation. The molecular structures of these four C84-based CYCFs are determined unambiguously by single-crystal X-ray diffraction. Surprisingly, although the ionic radii of Y3+, Dy3+, and Tb3+ differ slightly by only 0.01 Å, such a subtle difference leads to an obvious change in the metal-cage interactions, as inferred from the distance between the metal atom and the nearest hexagon center of the C2(13)-C84 cage. On the other hand, upon altering the isomeric cage from DyCN@C2(13)-C84 to DyCN@C2v(17)-C84, the Dy-cage distance changes as well, indicating the interplay between the encapsulated DyCN cluster and the outer cage. Therefore, we demonstrate that the metal-cage interactions within CYCFs can be steered via both internal and external routes.

17.
Sci Adv ; 5(8): eaaw0982, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31467971

RESUMEN

Carboncones, a special family of all-carbon allotropes, are predicted to have unique properties that distinguish them from fullerenes, carbon nanotubes, and graphenes. Owing to the absence of methods to synthesize atomically well-defined carboncones, however, experimental insight into the nature of pure carboncones has been inaccessible. Herein, we describe a facile synthesis of an atomically well-defined carboncone[1,2] (C70H20) and its soluble penta-mesityl derivative. Identified by x-ray crystallography, the carbon skeleton is a carboncone with the largest possible apex angle. Much of the structural strain is overcome in the final step of converting the bowl-shaped precursor into the rigid carboncone under mild reaction conditions. This work provides a research opportunity for investigations of atomically precise single-layered carboncones having even higher cone walls and/or smaller apex angles.

18.
J Org Chem ; 84(19): 12259-12267, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31315398

RESUMEN

A general one-step synthesis of symmetrical or unsymmetrical 1,4-di(organo)fullerenes from organo(hydro)fullerenes (RC60H) is realized by direct oxidative arylation. The new combination of catalytic trifluoromethanesulfonic acid (TfOH) and stoichiometric o-chloranil is the first to be used to directly generate an R-C60+ intermediate from common RC60H. Unexpectedly, the in situ generated R-C60+ intermediate is shown to be quite stable in whole 13C NMR spectroscopy characterization in the absence of cation quenching reagents. Because the direct oxidation of common RC60H to form the corresponding R-C60+ has never been realized, the present combination of TfOH and o-chloranil solves the challenges associated with the formation of stable RC60+ cations from common RC60H without any coordination of an R group.

19.
Angew Chem Int Ed Engl ; 58(40): 14095-14099, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237012

RESUMEN

All previously reported C70 isomers have positive curvature and contain 12 pentagons in addition to hexagons. Herein, we report a new C70 species with two negatively curved heptagon moieties and 14 pentagons. This unconventional heptafullerene[70] containing two symmetric heptagons, referred to as dihept-C70 , grows in the carbon arc by a theoretically supported pathway in which the carbon cluster of a previously reported C66 species undergoes successive C2 insertion via a known heptafullerene[68] intermediate with low energy barriers. As identified by X-ray crystallography, the occurrence of heptagons facilitates a reduction in the angle of the π-orbital axis vector in the fused pentagons to stabilize dihept-C70 . Chlorination at the intersection of a heptagon and two adjacent pentagons can greatly enlarge the HOMO-LUMO gap, which makes dihept-C70 Cl6 isolable by chromatography. The synthesis of dihept-C70 Cl6 offers precious clues with respect to the fullerene formation mechanism in the carbon-clustering process.

20.
J Am Chem Soc ; 141(16): 6651-6657, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30879294

RESUMEN

The combustion has long been applied for industrial synthesis of carbon materials such as fullerenes as well as carbon particles (known as carbon black), but the components and structures of the carbon soot are far from being clarified. Herein, we retrieve an unprecedented hydrofullerene C66H4 from a soot of a low-pressure combustion of benzene-acetylene-oxygen. Unambiguously characterized by single-crystal X-ray diffraction, the C66H4 renders a nonclassical geometry incorporating two heptagons and two pairs of fused pentagons in a C2 v symmetry. The common vertexes of the fused pentagons are bonded with four hydrogen atoms to convert the hydrogen-linking carbon atoms from sp2 to sp3 hybridization, which together with the adjacent heptagons essentially releases the sp2-bond strains on the abutting-pentagon sites of the diheptagonal fused pentagon C66 (dihept-C66). DFT computations suggest the possibility for an in situ hydrogenation process leading to stabilization of the dihept-C66. In addition, the experiments have been carried out to study heptagon-dependent properties of dihept-C66H4, indicating the key responsibility of the heptagon for changing hydrocarbon activity and electronic properties. The present work with the unprecedented double-heptagon-containing hydrofullerene successfully isolated and identified as one of the low-pressure combustion products shows that the heptagon is a new building block for constructing fullerene products in addition to pentagons and hexagons in low-pressure combustion systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...